Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4,4-Diacetylheptanedinitrile

Guo-wei Wang, ${ }^{\text {a }}$ Jian Zhang, ${ }^{\text {a }}$ Ling-hua Zhuang, ${ }^{\text {b }}$ Wen-yuan Wu^{b} and Jin-tang Wang ${ }^{\text {b* }}$

${ }^{\text {a }}$ Department of Light Chemical Engineering, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and ${ }^{\text {b }}$ Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
Correspondence e-mail: wjt@njut.edu.cn
Received 24 November 2008; accepted 27 November 2008
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.071 ; w R$ factor $=0.152$; data-to-parameter ratio $=13.9$.

The asymmetric unit of the title compound, $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$, contains one half-molecule as the central C atom of the molecule lies on a twofold rotation axis. In the crystal structure, weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link the molecules into zigzag chains along c.

Related literature

For details of the biological activity of aminothiazoles, see: Kabalka \& Mereddy (2006). For their use in organic synthesis, see: Kim et al. (2001); Ranu \& Banerjee (2005); Ranu et al. (2006); Wang et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$	$a=12.562(3) \AA$
$M_{r}=206.24$	$b=7.8700(16) \AA$
Monoclinic, $C 2 / c$	$c=10.941(2) \AA$

 \(a=12.562(3) \AA\)
 $M_{r}=206.24$
Monoclinic, $C 2 / c$
$\beta=84.91$ (3) ${ }^{\circ}$
$V=1077.4$ (4) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation

Data collection
Enraf-Nonius CAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.961, T_{\text {max }}=0.991$
1009 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.071$
$w R\left(F^{2}\right)=0.152$
$S=1.00$
974 reflections
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

974 independent reflections
758 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
3 standard reflections every 200 reflections intensity decay: 9%

70 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.27$ e \AA^{-3}
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 B \cdots \mathrm{~N}^{\mathrm{i}}$	0.97	2.66	$3.533(5)$	150

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2557).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Kabalka, G. W. \& Mereddy, A. R. (2006). Tetrahedron Lett. 47, 5171-5172.
Kim, D. Y., Huh, S. C. \& Kim, S. M. (2001). Tetrahedron Lett. 42, 62996301.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Ranu, B. C. \& Banerjee, S. (2005). Org. Lett. 7, 3049-3052.
Ranu, B. C., Banerjee, S. \& Jana, R. (2006). Tetrahedron, 3, 776-782.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, G.-W., Zhuang, L.-H., Wu, W.-Y. \& Wang, J.-T. (2008). Acta Cryst. E64, 0856.

supplementary materials

Acta Cryst. (2009). E65, o15 [doi:10.1107/S1600536808039962]

4,4-Diacetylheptanedinitrile

G. Wang, J. Zhang, L. Zhuang, W. Wu and J. Wang

Comment

The biological activity of aminothiazoles has been well documented. They have broad applications in the treatment of allergies, hypertension, schizophrenia,inflammation, bacterial infections, and HIV (Kabalka \& Mereddy, 2006). Dicarbonyl compounds represent an important class of starting materials materials used to increase the carbon number of organic compounds (Kim et al., 2001). Many dicarbonyl compounds have been synthesized by the Michael addition method using diethyl malonate as starting compound, but only a few Michael addition diadducts were synthesized under normal conditions (Ranu \& Banerjee, 2005; Ranu et al., 2006). We are focusing our synthetic and structural studies on new products of Michael addition reactions from dicarbonyl compounds (Wang et al.,2008) and we report here the crystal structure of the title compound (I), Fig. 1.

All bond lengths are within normal ranges (Allen et al., 1987). The asymmetric unit contains one half-molecule, and the central C 4 atom lies on a twofold rotation axis at right angles to the $a c$ plane, which generates the other half-molecule. In the crystal structure weak, intermolecular C6-H6B $\cdots \mathrm{N}$ hydrogen bonds link the molecules into zig-zag chains along the c axis, Table 1, Fig 2.

Experimental

2,4-Pentanedione (50 mmol) was dissolved in n-hexane (40 ml) and anhydrous potassium carbonate (100 mmol) and tetrabutylammonium bromide $(0.5 \mathrm{~g})$ added. Acrylonitrile (100 mmol) was added dropwise to this solution and the mixture refluxed for 6 h .50 ml ethyl acetate were then added, the organic layer was filtered and the solvent removed under vacuum to yield the crude product (I). This was crystallized from ethyl acetate (15 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of acetonitrile.

Refinement

All H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.96$ and $0.97 \AA$ for methyl and methylene H atoms, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=x U_{\mathrm{eq}}(\mathrm{C})$, where $x=1.5$ for methyl H and $x=1.2$ for methylene H atoms.

Figures

Fig. 1. A view of the molecular structure of (I) showing the atom-numbering scheme and 30% displacement ellipsoids (arbitrary spheres for the H atoms).

supplementary materials

Fig. 2. The crystal packing of (I), viewed down the a axis. Hydrogen bonds are drawn as dashed lines.

4,4-Diacetylheptanedinitrile

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$
$F_{000}=440$
$M_{r}=206.24$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=12.562$ (3) \AA
$b=7.8700(16) \AA$
$c=10.941(2) \AA$
$\beta=84.91(3)^{\circ}$
$V=1077.4(4) \AA^{3}$
$D_{\mathrm{x}}=1.271 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=10-13^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$
$Z=4$

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=293(2) \mathrm{K}$
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.961, T_{\text {max }}=0.991$
1009 measured reflections
974 independent reflections
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=25.3^{\circ}$
$\theta_{\text {min }}=3.1^{\circ}$
$h=-14 \rightarrow 15$
$k=0 \rightarrow 9$
$l=0 \rightarrow 13$
3 standard reflections
every 200 reflections
intensity decay: 9\%
758 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.071$
$w R\left(F^{2}\right)=0.152$
$S=1.00$
974 reflections

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0339 P)^{2}+4.1549 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.27$ e \AA^{-3}

70 parameters

$\Delta \rho_{\text {min }}=-0.19$ e \AA^{-3}
Primary atom site location: structure-invariant direct methods

Extinction correction: none

Special details

Experimental. ${ }^{1} \mathrm{H}$ NMR (DMSO, δ, p.p.m.) 2.15 (s, 6H), $2.23(\mathrm{t}, 4 \mathrm{H}), 2.31(\mathrm{t}, 4 \mathrm{H})$.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O	$0.65270(17)$	$-0.0258(3)$	$0.3475(2)$	$0.0523(7)$
N	$0.3630(3)$	$0.4652(4)$	$0.5714(3)$	$0.0646(9)$
C 1	$0.6246(3)$	$-0.1760(4)$	$0.1653(3)$	$0.0495(9)$
H1A	0.6530	-0.1210	0.0912	0.074^{*}
H1B	0.5608	-0.2368	0.1503	0.074^{*}
H1C	0.6765	-0.2541	0.1920	0.074^{*}
C2	$0.5988(2)$	$-0.0454(4)$	$0.2629(3)$	$0.0369(7)$
C3	0.5000	$0.0686(5)$	0.2500	$0.0288(8)$
C4	$0.3719(2)$	$0.3939(4)$	$0.4802(3)$	$0.0442(8)$
C5	$0.3865(3)$	$0.3008(4)$	$0.3639(3)$	$0.0440(8)$
H5A	0.4002	0.3802	0.2966	0.053^{*}
H5B	0.3218	0.2383	0.3511	0.053^{*}
C6	$0.4802(2)$	$0.1776(4)$	$0.3665(2)$	$0.0341(7)$
H6A	0.4670	0.1029	0.4367	0.041^{*}
H6B	0.5445	0.2421	0.3777	0.041^{*}

Atomic displacement parameters (A^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O	$0.0447(12)$	$0.0599(15)$	$0.0551(13)$	$0.0160(11)$	$-0.0197(10)$	$-0.0091(12)$
N	$0.072(2)$	$0.0551(19)$	$0.0633(19)$	$0.0016(17)$	$0.0109(15)$	$-0.0178(17)$
C 1	$0.0502(19)$	$0.0408(19)$	$0.057(2)$	$0.0116(15)$	$-0.0038(15)$	$-0.0075(16)$
C 2	$0.0355(15)$	$0.0341(16)$	$0.0418(16)$	$0.0002(13)$	$-0.0073(12)$	$0.0048(13)$
C 3	$0.0305(18)$	$0.0244(19)$	$0.0319(19)$	0.000	$-0.0057(15)$	0.000
C 4	$0.0466(17)$	$0.0325(16)$	$0.0519(19)$	$0.0021(14)$	$0.0048(14)$	$-0.0001(15)$
C 5	$0.0497(18)$	$0.0375(17)$	$0.0440(17)$	$0.0072(14)$	$-0.0005(13)$	$-0.0057(14)$
C 6	$0.0423(15)$	$0.0281(15)$	$0.0324(14)$	$0.0013(12)$	$-0.0058(11)$	$0.0006(12)$

supplementary materials

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

$\mathrm{O}-\mathrm{C} 2$	1.205 (3)	C3-C6	1.538 (3)
$\mathrm{N}-\mathrm{C} 4$	1.142 (4)	C4-C5	1.466 (4)
$\mathrm{C} 1-\mathrm{C} 2$	1.497 (4)	C5-C6	1.528 (4)
C1-H1A	0.9600	C5-H5A	0.9700
C1-H1B	0.9600	C5-H5B	0.9700
C1-H1C	0.9600	C6-H6A	0.9700
C2-C3	1.547 (3)	C6-H6B	0.9700
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	$\mathrm{N}-\mathrm{C} 4-\mathrm{C} 5$	178.3 (4)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	C4-C5-C6	109.8 (3)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	C4-C5-H5A	109.7
C2-C1-H1C	109.5	C6-C5-H5A	109.7
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C4-C5-H5B	109.7
H1B-C1-H1C	109.5	C6-C5-H5B	109.7
$\mathrm{O}-\mathrm{C} 2-\mathrm{C} 1$	122.3 (3)	H5A-C5-H5B	108.2
$\mathrm{O}-\mathrm{C} 2-\mathrm{C} 3$	120.4 (3)	C5-C6-C3	114.0 (2)
C1-C2-C3	117.2 (2)	C5-C6-H6A	108.8
C6-C3-C6 ${ }^{\text {i }}$	112.2 (3)	C3-C6-H6A	108.8
C6-C3-C2 ${ }^{\text {i }}$	109.09 (15)	C5-C6-H6B	108.8
C6-C3-C2	108.63 (15)	C3-C6-H6B	108.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 2$	109.2 (3)	H6A-C6-H6B	107.6
$\mathrm{O}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 6$	-7.9 (4)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 2^{\text {i }}$	54.4 (2)
C1-C2-C3-C6	173.3 (3)	C4-C5-C6-C3	178.0 (2)
$\mathrm{O}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 6^{\text {i }}$	114.6 (3)	C6 ${ }^{\text {i }}$ - $3-\mathrm{C} 6-\mathrm{C} 5$	57.5 (2)
C1-C2-C3-C6 ${ }^{\text {i }}$	-64.2 (3)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 6-\mathrm{C} 5$	-62.9 (3)
$\mathrm{O}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 2^{\mathrm{i}}$	-126.8 (3)	C2-C3-C6-C5	178.1 (2)

Symmetry codes: (i) $-x+1, y,-z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{~N}^{\mathrm{ii}}$	0.97	2.66	$3.533(5)$	150

Symmetry codes: (ii) $-x+1,-y+1,-z+1$.

Fig. 1

Fig. 2

